Approximation systems for functions in topological and in metric spaces

نویسنده

  • Dimiter Skordev
چکیده

A notable feature of the TTE approach to computability is the representation of the argument values and the corresponding function values by means of infinitistic names. Although convenient for the development of the theory, using such objects as data deviates from the computational practice and has a drawback from a logico-philosophical point of view. Two ways to eliminate the using of such names in certain cases are indicated in the paper. The first one is intended for the case of topological spaces with selected indexed denumerable bases. Suppose a partial function is given from one such space into another one whose selected base has a recursively enumerable index set, and suppose that the intersection of base open sets in the first space is computable in the sense of Weihrauch-Grubba. Then the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable relation between indices of base sets containing the argument value and indices of base sets containing the corresponding function value. This result can be regarded as an improvement of a result of Korovina and Kudinov. The second way is applicable to metric spaces with selected indexed denumerable dense subsets. If a partial function is given from one such space into another one, then, under a semi-computability assumption concerning these spaces, the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable set of quadruples. Any of them consists of an index of element from the selected dense subset in the first space, a natural number encoding a rational bound for the distance between this element and the argument value, an index of element from the selected dense subset in the second space and a natural number encoding a rational bound for the distance between this element and the function value (in general, this set of quadruples is different from the one which straightforwardly arises from the relation used in the first way of elimination). One of the examples in the paper indicates that the computability of real functions can be characterized in a simple way by using the first way of elimination of the infinitistic names. 2012 ACM CCS: [Theory of computation]: Models of computation—Computability; [Mathematics of computing]: Mathematical analysis—Numerical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

Approximation of endpoints for multi-valued mappings in metric spaces

In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.

متن کامل

Common fixed points for a pair of mappings in $b$-Metric spaces via digraphs and altering distance functions

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying some generalized contractive type conditions in $b$-metric spaces endowed with graphs and altering distance functions. Finally, some examples are provided to justify the validity of our results.

متن کامل

Optimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces

In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...

متن کامل

Some local fixed point results under $C$-class functions with applications to coupled elliptic systems

The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...

متن کامل

ON SOMEWHAT FUZZY AUTOMATA CONTINUOUS FUNCTIONS IN FUZZY AUTOMATA TOPOLOGICAL SPACES

In this paper, the concepts of somewhat fuzzy automata continuous functions and somewhat fuzzy automata open functions in fuzzy automata topological spaces are introduced and some interesting properties of these functions are studied. In this connection, the concepts of fuzzy automata resolvable spaces and fuzzy automata irresolvable spaces are also introduced and their properties are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013